Rechargeable batteries are a common and exciting sight these days. But how do they hold up as power sources for effects pedals? Let’s find out.
The Contenders
Theoretically, rechargeable versions of the alkaline batteries we discussed last time would be a good choice for effects pedals. The chemistry is the same, but the battery is constructed so as not to explode when being recharged! Rechargeable alkalines are inexpensive to make, and only require a simple charger. They are non-toxic, and have a low self-discharge: left unused they have a shelf life up to 10 years. Unfortunately, few companies seem to make them these days and I couldn’t find a 9V at all. Newer technologies seem to have pushed them aside.
One limitation to rechargeable alkalines is the high internal resistance which means they are not suitable for high current devices. Although this doesn’t matter for many effects pedals, technology had to evolve support the high drain digital products we use today. New rechargeable chemistries had to be developed, and one of the first was Nickel Cadmium (NiCd).
The common chemistry used in the early days had drawbacks. Recharging a single battery a hundred or even a thousand times over before disposal should be much more environmentally friendly, especially if you have access to domestic power from renewable sources such as solar. Unfortunately the Cadmium used in NiCd rechargables is highly toxic, and requires special processing for disposal, undoing much of the environmental benefit of recharging. The use of Cadmium is now significantly restricted in the European Union under the RoHS and REACH programs, making these pretty much unusable in Europe.
Early NiCd cells suffered from an issue where a particular sequence of charge discharge events could cause the battery to apparently lose capacity. The story goes that this behavior was first observed on a satellite in space, but there was also a much more down to earth use case. Imagine you regularly drain a battery to a particular level, say 50% such as when using a laptop in a normal workday. In the evening you plug in the charger and leave it to charge slowly overnight. You do this for a week or so, then one day, you go on a long trip, you try to use all the batteries capacity: Although apparently fully charged, it dies at 50%, as if it ‘remembered’ it’s usual workday. For this reason it became known as the ‘memory effect’.
In reality what was happening was the cadmium-hydroxide crystals in the cells were growing as much as 100 times, increasing the internal resistance and causing voltage depression. The capacity was actually still there, but could no longer supply the voltage necessary to drive the device. The issue can be countered by exercising (discharge /charge) and reconditioning (slow discharge to below cut off voltage). Recent design NiCd’s have significantly reduced this behavior.
Nickel Metal Hydride (NiMH) is a good choice for effects pedals. They can last up to a thousand cycles with reasonable performance. They are prone to self-discharge which means they will lose some of their charge just sitting unused. However, advances have been made recently that improve this and good quality ‘low self-discharge’ 9V batteries with capacities of around 250mAh are available for under $10 each. A charger can be had for around $20.
The new kid on the block for 9v rechargeable batteries is Lithium-Ion, using the same chemistry as the batteries in smart gadgets like phones and computers, but in a 9V format. The specifications look attractive: The batteries are really light, have capacities up to 600mAh, and a 4 pack with charger can be had for less than $30. There is not much choice though. The two big name battery manufacturers do not offer Li-Ion rechargeables, and there is little technical information on the brands that are available. It’s early days for these. It will be interesting to see how they work out.
Pros and Cons
Alkaline
Low cost
Very low self discharge
Non-toxic
Unavailable in 9V
High internal resistance
NiCd
High discharge rate
Good over charge discharge tolerance
Long cycle life
Heavy
Toxic
Low energy density
NiMH
Non-toxic
Good energy density
Wide availability
High self discharge
Low over charge discharge tolerance
Li-Ion
Very light
Non-toxic
Very high energy density
Limited choice
Low over charge discharge tolerance
Unproven in 9V form
Conclusions
Charging a rechargeable costs pennies, and with hundreds of recharges over several years, the extra initial cost is soon recovered. When they reach the end of their useful lives, disposing of one rechargeable vs. one hundred alkalines is always going to be better for the environment. Music equipment such as effects pedals, wireless microphones, headphones, and portable recorders make great candidates for rechargeable batteries.
Apart from a few niche applications such as RC car racing, NiCd is on its way out. The low energy capacity and toxic contents are 20th Century battery technology.
NiMH is going to get the Best Buy rating here. NiMH has a reasonable energy density, and should be able to provide about 20 hours use per charge for a typical middle of the road analog effects pedal. Most of the common battery types, including 9V are available, from a wide range of different manufacturers, including the major brands. A top of the line 9V NiMH will cost about $10, with cheap ones for around $3. I’d steer clear of the real low end ones. There’s plenty to choose from reputable manufacturers for just a little more. Get a decent quality ‘smart’ charger rather than a ‘value’ or ‘dumb’ charger. The smart charger will reduce the likelihood of over overcharging or shorting. If you don’t use the batteries regularly, take them out every few months and give them a full charge.
Li-Ion gets the Most Promising Newcomer award. The chemistry is well proven in numerous electronic gadgets, computers, power tools, medical and industrial applications, even cars and airplanes, but is somewhat new to the 9V. The choice is pretty limited, but the light weight, and high energy density make them appealing. After researching this article, I bought a few and I’ll be using them here around the lab. I’ll report back on how they do.
I’m trying to find some good battery systems that I can use for my electronics when I go out camping. This article actually helped me out a lot. I like that NiCd has a long cycle life, which would probably be the most important thing that I am looking for. Thanks for helping me out with this.
Glad we could help
I’m interested in finding a battery powered solution for my quad cortex. I’m thinking about building a pedalboard for it my polyphonic tuner and an expression pedal. I was hoping you might have a suggestion as to what components may work best.
John Cowhig